新闻动态
  • 1
    数控机床可以记录刀具寿命么?
    在制定项目工作中,常常要对刀具使用寿命做一个估算,将此作为预算、规划的参考依据。通常应该对相同行业,相同产品类似加工形式刀具消耗情况调查和了解,以此作为基础,进行成熟度、准确性评估后,做出相应刀具寿命的预定值。一般的数控机床本身不具体记录刀具寿命,但数据机床都可以设定一个寿命值。刀具在选型和测试的过程中往往可以和刀具提供者一起确定一个常规的当前加工场景下的可生产刀具寿命。该寿命有两种表达方式:如被加工材料属于难加工材料且耗刀换刀时间短的,可采用加工工作的数量作为刀具寿命的设定值;如被加工材料属于易加工材料即换刀时间很长的,如铝合金等材料,可采用加工工时作为刀具寿命的设定值。数据机床是可以将工作数量、工时时间作为刀具寿命的设定值输入进数据系统的。机床会采用自动计数或计时长的方式来完成刀具寿命的统计。但在此过程中,若因材料、加工参数、工人、机床、刀具等原因导致寿命不达出现的加工异常是数控机床不能控制的,需要工人根据实际情况选择停机增加零件的检测。
  • 2
    刀具破损的6种原因
    刀具破损切削刃微崩当工件材料组织、硬度、余量不均匀,前角偏大导致切削刃强度偏低,工艺系统刚性不足产生振动,或进行断续切削,刃磨质量欠佳时,切削刃容易发生微崩,即刃区出现微小的崩落、缺口或剥落。出现这种情况后,刀具将失去一部分切削能力,但还能继续工作。继续切削中,刃区损坏部分可能迅速扩大,导致更大的破损。切削刃或刀尖崩碎这种破损方式常在比造成切削刃微崩更为恶劣的切削条件下产生,或者是微崩的进一步的发展。崩碎的尺寸和范围都比微崩大,使刀具完全丧失切削能力,而不得不终止工作。刀尖崩碎的情况常称为掉尖。刀片或刀具折断当切削条件极为恶劣,切削用量过大,有冲击载荷,刀片或刀具材料中有微裂,由于焊接、刃磨在刀片中存在残余应力时,加上操作不慎等因素,可能造成刀片或刀具产生折断。发生这种破损形式后,刀具不能继续使用,以致报废。刀片表层剥落对于脆性很大的材料,如TiC含量很高的硬质合金、陶瓷、PCBN等,由于表层组织中有缺陷或潜在裂纹,或由于焊接、刃磨而使表层存在着残余应力,在切削过程中不够稳定或刀具表面承受交变接触应力时极易产生表层剥落。剥落可能发生在前刀面,刀可能发生在后刀面,剥落物呈片状,剥落面积较大。涂层刀具剥落可能性较大。刀片轻微剥落后,尚能继续工作,严重剥落后将丧失切削能力。切削部位塑性变型具钢和高速钢由于强度小硬度低,在其切削部位可能发生塑性变型。硬质合金在高温和三向压应力状态直工作时,也会产生表层塑性流动,甚至使切削刃或刀尖发生塑性变形面造成塌陷。塌陷一般发生在切削用量较大和加工硬材料的情况下。TiC基硬质合金的弹性模量小于WC基硬质合金,故前者抗塑性变形能力加快,或迅速失效。PCD、PCBN基本不会发生塑性变形现象。刀片的热裂当刀具承受交变的机械载荷和热负荷时,切削部分表面因反复热胀冷缩,不可避免的产生交变的热应力,从而使刀片发生疲劳而开裂。例如,硬质合金铣刀进行高速铣削时,刀齿不断受到周期性地冲击和交变热应力,而在前刀面产生梳状裂纹。有些刀具虽然并没有明显的交变载荷与交变应力,但因表层、里层温度不一致,也将产生热应力,加上刀具材料内部不可避免地存在缺陷,,故刀片也可能产生裂纹。裂纹形成后刀具有时还能继续工作一段时间,有时裂纹迅速扩展导致刀片折断或刀面严重剥落。
  • 3
    为什么刀具破损严重?怎么办?
    刀具破损1.后刀面磨损:进给量过小,或者切削速度偏大2.破损:加工粘性(碳含量低)的材料时,切屑积累在刃顶形成积屑瘤,导致刀片涂层收到拉应力剥落失效3.沟槽磨损:在*大切深时出现局部损坏,一般加工硬化或者毛刺导致4.月牙洼磨损:切屑和前刀面接触,造成磨损5.裂纹:温度波动大,导致涂层出现梳妆裂纹,可能延伸波及基底6.断裂:切削力过大,或者装夹不稳定7.塑性变形:切削力过大,或者温度过高8.崩刃:温度,机械,粘附都可能导致,但刀具仍可继续使用。怎么办1、刃口磨损。改进办法:提高进给量;降低切削速度;使用更耐磨的刀片材质;使用涂层刀片。2、崩碎。改进办法:使用韧性更好的材质;使用刃口强化的刀片;检查工艺系统的刚性;加大主偏角。3、热变形。改进办法:降低切削速度;减少紧急;减少切深;使用更具热硬性的材质。4、切深处破损。改进办法:改变主偏角;刃口强化;更换刀片材质。5、热裂纹。改进办法:正确使用冷却液;降低切削速度;减少紧急;使用涂层刀片。6、积屑。改进办法:提高切削速度;提高进给;使用涂层刀片或金属陶瓷刀片;使用冷却液;使刃口更锋利。7、月牙洼磨损。改进办法:降低切削速度;降低进给;使用涂层刀片或金属陶瓷刀片;使用冷却液。8、断裂。改进办法:使用韧性更好的材质或槽型;减少紧急;减少切深;检查工艺系统的刚性。
  • 4
    怎样延长刀具寿命
    刀具寿命随着零部件制造商不断提高生产率,客户通常每年都会提出降低加工完成的零部件价格的要求,这就对零部件制造商的利润率提出了挑战。为了自己的生存和发展,零部件制造商必须不遗余力地降低生产成本,改进的途径包括:提高员工劳动生产率、延长刀具寿命、改善耗材管理、降低能源消耗等。*初的突破源于对攻丝和螺纹质量的研究。通过在显微镜下对丝锥切削刃进行放大检查,发现其上粘附有一些微小颗粒。分析结论是,这些金属颗粒来自于铝合金工件材料,尽管它们非常细小,但仍然会阻碍丝锥有效地切削螺纹。事实证明,通过提高冷却液压力来去除这些金属颗粒的设想并不正确。随后,提出了采用机械操作方式——用带有尼龙刷毛的刷子清刷丝锥的方案,而且在每一次攻丝循环时都必须进行这种操作。为了避免在加工中心上清刷丝锥造成攻丝循环中断而耗费时间,他们将尼龙刷安装在夹具上,并通过加工编程,使在每次攻丝循环开始之前,丝锥都紧靠着固定的尼龙刷对切削刃进行一次清刷。其结果是,操作工人反映,对加工后螺纹工件的检测结果表明,螺纹质量明显提高,螺纹表面清洁,无缺陷和微小毛刺。甚至在超过了规定刀具寿命(为便于管理刀具库存,针对所用每种刀具确定的使用寿命)之后,螺纹质量仍能保持合格。通过在每次加工循环开始时或结束后清刷切削刃,可使刀具寿命提高2-4倍不等。对可转位陶瓷铣刀片也进行了超过6个月的试验。清刷刀具切削刃的优势包括提高零件质量、延长刀具寿命、减少刀具库存,以及因降低了换刀频率而增加机床的加工时间。为了进一步延长刀具寿命,技术人员也尝试过用含有磨料(如氧化铝或碳化硅磨料)的刷子来清刷切削刃,不过该方法并不成功,在所有情况下,刀具寿命反而有所降低。
  • 5
    国内刀具磨损检测系统的现状及未来发展方向展望
    金属加工过程中,刀具监控的状态对于生产效率和表面加工质量有重要影响,对刀具进行磨损检测具有一定的必要性。在传统行业中,操作人员一般会通过切屑的颜色变化、振动声音的变化、加工时间和加工工件的数量等来判断刀具的磨损状态及破损情况。人工判断受经验等因素影响较大,判断准确性不高,会出现以下情况:(1)会造成刀具磨损量尚未超过规定的磨损标准就被更换,使刀具没有被充分利用,造成严重浪费而使产品成本升高;(2)会造成刀具已严重磨损或破损而不能及时被更换,这不仅影响工件表面加工的质量和尺寸精度,还有可能造成人员伤亡事故的发生。由此可见,在机加工过程中,对刀具磨损状态进行检测是至关重要的。—、我国刀具磨损检测系统的发展历史刀具磨损状态检测系统是指在生产加工过程中,通过某种传感器,将刀具磨损变化量转换成该传感器的信号变化量。然后,采集传感器的输出信号并进行分析和处理,从而得到刀具的当前磨损状态,以便进一步预测刀具未来时刻的可能磨损量。系统的具体模块是:研究对象、加工条件、信号采集、特征提取、状态识别。迄今为止,由于切削过程的多样性、复杂性和随机性,我国现有的刀具检测系统不具有通用性。刀具状态自动监控仍是一项尚未完善解决,是迫切需要进一步研究和探索的科研课题。迄今为止,由于切削过程的多样性、复杂性和随机性,我国现有的刀具检测系统不具有通用性。刀具状态自动监控仍是一项尚未完善解决,是迫切需要进一步研究和探索的科研课题。间接法测量中,比较有代表性的有切削力检测、声发射检测、振动检测、切削温度检测及工件表面粗糙度检测等几种。完成切削力检测的设备较为昂贵,占很大安装空间,在研究切削力变化时,研究人员难以判断是切削力自身变化还是由工件材料等物理属性的变化引起的。声发射检测的传感器虽安装方便,当安装位置要求较高,安装的位置不同对检测的影响程度不一样。检测振动信号通常是使用压电式加速传感器,但实际检测时检测工件的垂直面比较难以实现,很难得到理想的检测信号。使用热电效应进行温度检测,但因热电偶的惯性大响应慢,不适用于实际生产。用已加工出来的工件的表面粗糙度来反映磨损量的变化情况,不能够及时反映出刀具的磨损量。另外,影响工件表面粗糙度的因素不是单方面引起的,且需要事先采集样品定标,受工况中切削液、切屑、工件材质、振动等的影响较大,实用水平不高。各种间接检测方法虽然实施起来比较方便,但其敏感性低,信号变化不大时检测难度大,且会因为材料内部分布不均匀受到影响。
  • QQ咨询
  • 电话咨询
  • 13920459843
  • 021-51870926